Chapter 15: Multiple Integrals

Section 1:

Definition 1:

R is a region in the plane. f(x, y) is a function of 2 variables which is defined on *R* (i.e. *R* is contained in Domain *f*), Then the double

integral of f on R is defined as: $\iint_{R} f(x, y) dA(x, y) = \lim_{\Delta A \to 0} \sum_{i=1}^{n} f(x_{i}, y_{i}) \Delta A_{i}$

Theorem 1:

R is a region in the plane.

f(x, y) is a function of 2 variables which is defined on R

f(x, y) continuous everywhere on R

$$\Rightarrow \iint_{\mathbb{R}} f(x, y) dA(x, y)$$
 exist.

Theorem 2: Fubini's Theorem:

Suppose *R* is a closed and bounded region in the plane with nice boundary. Suppose f(x, y) is a function of 2 variables which is continuous everywhere in the *R*. Then:

(i) If *R* looks like:

(ii) If R looks like:

Then:
$$\iint_R f(x, y) dA(x, y) = \int_c^d \int_{g_1(x)}^{g_2(x)} f(x, y) dx dy$$

Section 2:

Definition 1: Suppose *R* is a closed and bounded region in the plane with "nice" boundary. The area of *R* is defined as: Area of $R = \iint_{R} dA$

Definition 2:

R is a closed and bounded region in the plane with "nice" boundary. Suppose f(x, y) is a function of 2 variables which is continuous everywhere in *R*.

Then: The average of f on R is defined as: average value of f on $R = \frac{1}{\text{area of } R} \iint_R f(x, y) dA(x, y)$

Section 3:

Notation : $\iint_R f(x, y) dA(x, y) = \iint_R f(x, y) dx dy$

Area of a polar rectangle of center (r, θ) : $A = r\Delta r\Delta \theta$:

Theorem: Changing to Polar Coordinates:

R is a closed and bounded region in *xy*-plane with "nice" boundary. f(x, y) is a function of 2 variables which is continuous everywhere in *R*. Then: $\iint_R f(x, y) dx dy = \int_{R'} f(r \cos \theta, r \sin \theta) r dr d\theta$

Where *R*' is an appropriate region in the $r\theta$ -plane.

Section 3:

Definition 1:

D is a region in the plane. f(x, y, z) is a function of 3 variables. The triple integral of *f* on *D* is defined as:

$$\iiint_{D} f(x, y, z) dV(x, y, z) = \lim_{\Delta V \to 0} \sum_{i=1}^{n} f(x_i, y_i, z_i) \Delta V_i \text{ provided that the limit exists. Also,}$$
$$\Delta V = \max(\Delta V_1, \Delta V_2, \Delta V_3, \dots, \Delta V_n)$$

Theorem 1:

D is a region in the plane. f(x, y, z) is a function of 3 variables. f(x, y, z) continuous everywhere on RThen: D is closed and bounded $D \text{ has a "nice" boundary}} \Longrightarrow \iiint_D f(x, y, z) dV(x, y, z)$

Section 5:

Definition 1:

Suppose D is a closed and bounded region in space with "nice" boundary. Suppose S is a solid which occupies D.

Suppose $\delta(x, y, z)$ is the density of *D*.

Then:

(i) The mass of S is $M = \iiint_D \delta(x, y, z) dV$

(ii) The moment of S about xy-plane is
$$\begin{cases} M_{xy} = \iiint_D z \ \delta(x, y, z) dV \\ M_{xz} = \iiint_D y \ \delta(x, y, z) dV \\ M_{yz} = \iiint_D x \ \delta(x, y, z) dV \end{cases}$$
(iii) The coordinates of center of mass of the solid D are:
$$\begin{cases} \overline{x} = \frac{M_{yz}}{M} \\ \overline{y} = \frac{M_{xz}}{M} \\ \overline{z} = \frac{M_{xy}}{M} \end{cases}$$

Section 6:

Definition 1: Cylindrical Coordinates:

Theorem 1: Changing to Polar Coordinates:

Suppose *D* is a region in space which is closed and bounded and has a "nice" boundary. Suppose f(x, y, z) is a function of 3 variables which is continuous everywhere id *D* Then: $\iiint_D f(x, y, z) dx dy dz = \iiint_D f(r \cos \theta, r \sin \theta, z) r dr d\theta dz$ where *D*' is an appropriate region in the (r, θ, z) space. **Definition 2: Spherical Coordinates:**

The characteristics of spherical coordinates. $\rho \ge 0$ $0 < \phi < \pi$ $\rho = \sqrt{x^2 + y^2 + z^2}$ $x = r \cos \theta = \rho \sin \phi \cos \theta$ $y = r \sin \theta = \rho \sin \phi \sin \theta$ $z = \rho \sin \theta$

Theorem 2: Changing to Spherical Coordinates:

Suppose *D* is a region in space which is closed and bounded and has a "nice" boundary. Suppose f(x, y, z) is a function of 3 variables which is continuous everywhere id *D* Then: $\iiint_D f(x, y, z) dx dy dz = \iiint_D f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi d\rho d\phi d\theta$ where *D*' is an appropriate region in the (r, θ, z) space.

Section 7:

Theorem: Change of Variable formula:

R is a closed and bounded region in *xy*-plane with "nice" boundary. f(x, y) is a function of 2 variables which is continuous everywhere in *R*. *R*' is a region in the *uv*-plane.

 $\begin{cases} x = g(u, v) \\ y = h(u, v) \end{cases}$ A transformation from a *uv*-plane to the *xy*-plane that images *R*' one-to-one and onto

If the Jacobian $J(u,v) \neq 0$ everywhere in *R*', then $\iiint_R f(x, y) dx dy = \iiint_R f(g(u,v), h(u,v)) |J(u,v)| du dv$

Where $J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{dv} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{dv} \end{vmatrix}$