Chapter 15: Multiple Integrals

Section 1:

Definition 1:

R is a region in the plane.
$f(x, y)$ is a function of 2 variables which is defined on R (i.e. R is contained in Domain f), Then the double integral of f on R is defined as: $\iint_{R} f(x, y) d A(x, y)=\lim _{\Delta A \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}, y_{i}\right) \Delta A_{i}$

Theorem 1:

R is a region in the plane.
$f(x, y)$ is a function of 2 variables which is defined on R $f(x, y)$ contiuous everywhere on R
Then: R is closed and bounded R has a "nice" boundary

$$
\} \Rightarrow \iint_{R} f(x, y) d A(x, y) \text { exist. }
$$

Theorem 2: Fubini's Theorem:

Suppose R is a closed and bounded region in the plane with nice boundary.
Suppose $f(x, y)$ is a function of 2 variables which is continuous everywhere in the R.
Then:
(i) If R looks like:

Then: $\iint_{R} f(x, y) d A(x, y)=\int_{a}^{b} \int_{h_{1}(x)}^{h_{2}(x)} f(x, y) d y d x$ (Iterated Integral).
(ii) If R looks like:

Then: $\iint_{R} f(x, y) d A(x, y)=\int_{c}^{d} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d x d y$

Section 2:

Definition 1:

Suppose R is a closed and bounded region in the plane with "nice" boundary.
The area of R is defined as: Area of $R=\iint_{R} d A$

Definition 2:

R is a closed and bounded region in the plane with "nice" boundary.
Suppose $f(x, y)$ is a function of 2 variables which is continuous everywhere in R.
Then: The average of f on R is defined as: average value of f on $R=\frac{1}{\text { area of } R} \iint_{R} f(x, y) d A(x, y)$

Section 3:

Notation : $\iint_{R} f(x, y) d A(x, y)=\iint_{R} f(x, y) d x d y$
Area of a polar rectangle of center $(r, \theta): A=r \Delta r \Delta \theta$:

Theorem: Changing to Polar Coordinates:

R is a closed and bounded region in $x y$-plane with "nice" boundary. $f(x, y)$ is a function of 2 variables which is continuous everywhere in R.
Then: $\iint_{R} f(x, y) d x d y=\int_{R^{\prime}} f(r \cos \theta, r \sin \theta) r d r d \theta$

Where R^{\prime} is an appropriate region in the $r \theta$-plane.

Section 3:

Definition 1:

D is a region in the plane.
$f(x, y, z)$ is a function of 3 variables.
The triple integral of f on D is defined as:
$\iiint_{D} f(x, y, z) d V(x, y, z)=\lim _{\Delta V \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}, y_{i}, z_{i}\right) \Delta V_{i}$ provided that the limit exists. Also,
$\Delta V=\max \left(\Delta V_{1}, \Delta V_{2}, \Delta V_{3}, \ldots \ldots ., \Delta V_{n}\right)$

Theorem 1:

D is a region in the plane.
$f(x, y, z)$ is a function of 3 variables.
$f(x, y, z)$ contiuous everywhere on R
Then: D is closed and bounded
D has a "nice" boundary

$$
\Rightarrow \iiint_{D} f(x, y, z) d V(x, y, z)
$$

Section 5:

Definition 1:

Suppose D is a closed and bounded region in space with "nice" boundary.
Suppose S is a solid which occupies D.
Suppose $\delta(x, y, z)$ is the density of D.
Then:
(i) The mass of S is $M=\iiint_{D} \delta(x, y, z) d V$
(ii) The moment of S about $x y$-plane is $\left\{\begin{array}{l}M_{x y}=\iiint_{D} z \delta(x, y, z) d V \\ M_{x z}=\iiint_{D} y \delta(x, y, z) d V \\ M_{y z}=\iiint_{D} x \delta(x, y, z) d V\end{array}\right.$
(iii) The coordinates of center of mass of the solid D are: $\left\{\begin{array}{l}\bar{x}=\frac{M_{y z}}{M} \\ \bar{y}=\frac{M_{x z}}{M} \\ \bar{z}=\frac{M_{x y}}{M}\end{array}\right.$

Section 6:

Definition 1: Cylindrical Coordinates:

Theorem 1: Changing to Polar Coordinates:

Suppose D is a region in space which is closed and bounded and has a "nice" boundary.
Suppose $f(x, y, z)$ is a function of 3 variables which is continuous everywhere id D
Then: $\iiint_{D} f(x, y, z) d x d y d z=\iiint_{D^{\prime}} f(r \cos \theta, r \sin \theta, z) r d r d \theta d z$ where D^{\prime} is an appropriate region in the (r, θ, z) space.

Definition 2: Spherical Coordinates:

The characteristics of spherical coordinates.
$\rho \geq 0$
$0<\phi<\pi$
$\rho=\sqrt{x^{2}+y^{2}+z^{2}}$
$x=r \cos \theta=\rho \sin \phi \cos \theta$
$y=r \sin \theta=\rho \sin \phi \sin \theta$
$z=\rho \sin \theta$

Theorem 2: Changing to Spherical Coordinates:

Suppose D is a region in space which is closed and bounded and has a "nice" boundary.
Suppose $f(x, y, z)$ is a function of 3 variables which is continuous everywhere id D
Then: $\iiint_{D} f(x, y, z) d x d y d z=\iiint_{D^{\prime}} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta$ where D^{\prime} is an appropriate region in the (r, θ, z) space.

Section 7:

Theorem: Change of Variable formula:

R is a closed and bounded region in $x y$-plane with "nice" boundary.
$f(x, y)$ is a function of 2 variables which is continuous everywhere in R.
R^{\prime} is a region in the $u v$-plane.
$\left\{\begin{array}{l}x=g(u, v) \\ y=h(u, v)\end{array}\right.$
A transformation from a $u v$-plane to the $x y$-plane that images R^{\prime} one-to-one and onto
If the Jacobian $J(u, v) \neq 0$ everywhere in R^{\prime}, then $\left.\iiint_{R} f(x, y) d x d y=\iiint_{R^{\prime}} f(g(u, v), h(u, v)) J(u, v)\right) d u d v$
Where $J(u, v)=\left|\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{d v} \\ \frac{\partial y}{d u} & \frac{\partial y}{d v}\end{array}\right|$

